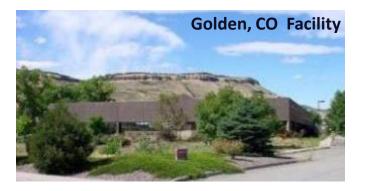

Low Temperature Durable Siloxane/Epoxy Nanocomposite Coating for Drastic Reduction in Lunar Particulate Adhesion


March 14, 2023

Dr. Lauryn Baranowski (PI), Dr. Denis Kissounko, Matthew Peppel Dr. James Nabity, Amrita Singh TDA Research Inc. | Wheat Ridge, CO 80033 | www.tda.com

About TDA Research, Inc.

- In Business since 1987
 - Privately held— 8 partners, 6 active in daily operations
 - ~109 employees, 30+ Ph.D.'s chemistry/engineering
 - About \$17-20 million in annual revenue
- Facilities
 - Combined 75,000 ft² laboratory and office space near Denver, Colorado
 - Catalyst testing: Continuous PFR, CSTR, batch, large scale, high P&T systems
 - Sorbents: Sulfur removal from natural gas; postcombustion CO2 capture; heavy-metals removal
 - Materials processing and testing
 - Process development (e.g., gas sweetening)
- Business Model
 - Identify opportunities with industry
 - Perform R&D
 - Secure intellectual property
 - Commercialize technology via spin-offs licensing, joint ventures, internal business units

TDA's business areas

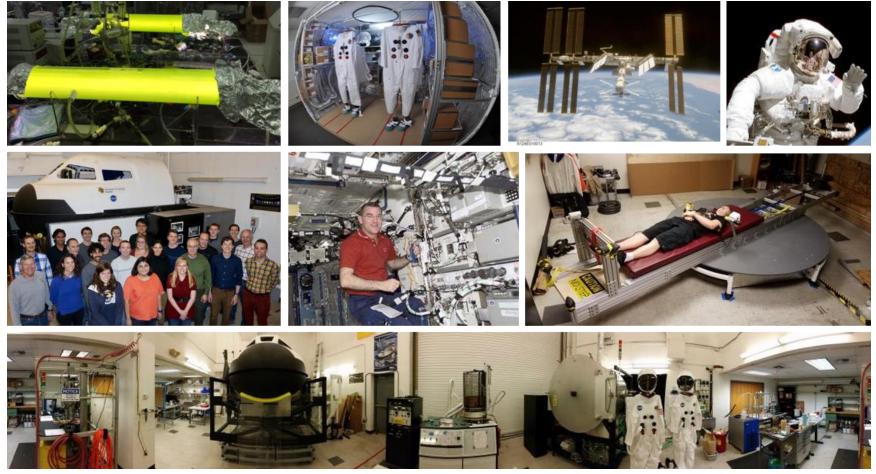
Defense and Aerospace

- Protective Paints and Coatings
- Chemical and Biological Defense
- Aerospace Cleaners
- Corrosion Inhibitors
- Personal Protective Equipment

Chemical Technologies

- Conducting Polymers
- Specialty Carbons

Energy Technologies


- Liquid Fuel & Syngas Cleanup
- Flue Gas Cleanup
- Carbon Capture

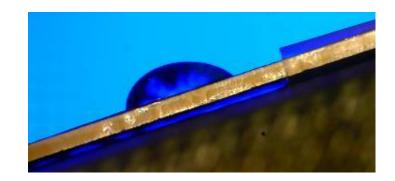
Bioastronautics Focus Area The <u>study</u> and <u>support</u> of life in space

Ann and HJ Smead Aerospace Engineering Sciences Department

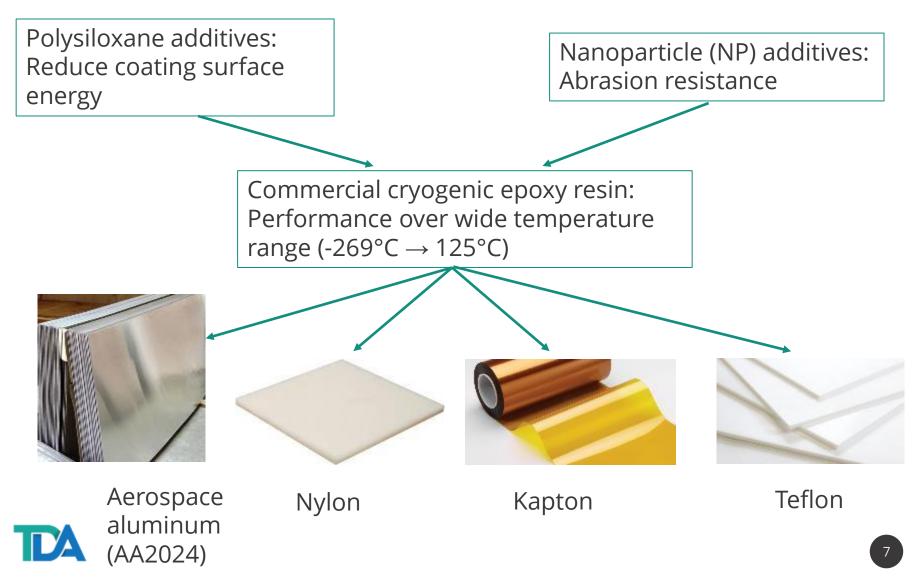
University of Colorado Boulder collaborators: Professor James Nabity, Amrita Singh

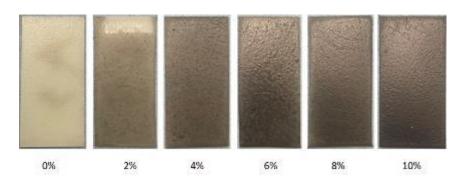
Motivation and Background

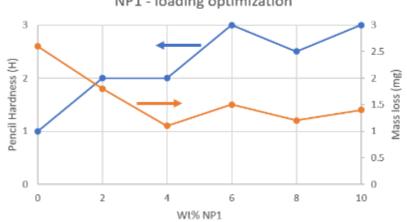
- NASA Artemis program requires passive lunar dust mitigation technologies
- Goal: >90% dust mitigation efficacy
- Coating requirements:
 - Performance at cryogenic temperatures
 - Abrasion resistant
 - Good adhesion to metal, plastic, and fabric surfaces
 - Low surface energy
 - Match work function of lunar dust



Low surface energy coating research at TDA


- NAVAIR SBIR to develop hydrophobic/ oleophobic coating for V-22 Osprey heat exchangers (Contract # N68335-20-C-0089)
- Acrylic coating with siloxane additives
- Electrodeposition is used to coat complicated fin structure of HX
- Coating results in 50% reduction in initial soiling, with 72% cleaning efficiency
- Durable to abrasion, thermal shock, water immersion

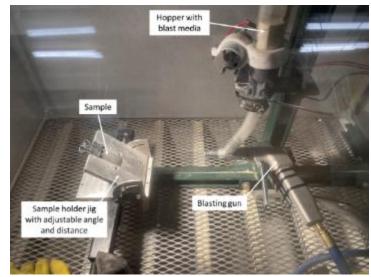

Coating formulation



Protected by SBIR data rights under Contract # N68335-20-C-0089

Coating chemistry optimization

- Several optimization experiments to determine exact coating formulation
- Iterative process with coating property measurements and dust mitigation performance
 NP1 - loading optimization



NP type	H ₂ O contact angle	Coating mass loss	Solar absorption change	Dust removal efficacy
NP1	61°	4.3%	+5%	87%
NP2	86°	2.9%	+2%	78%
NP3	75°	4.1%	-36%	92%
NP4	71°	1.6%	-8%	87%
NP3-NP4	73°	1.6%	-9%	90%

Coating physical properties

Substrate	Adhesion	Solar abs. change	Emissivity	H ₂ O contact angle
Nylon	5A	-9%	0.908	68°
AA2024	5A	-6%	0.874	68°
Teflon	5A	-16%	0.913	73°
Kapton	5A	-1%	0.908	67°

- Retested coating performance after sand blasting and/or cryo shock and saw minimal effects on:
 - Coating adhesion
 - Optical absorption
 - Dust removal efficacy

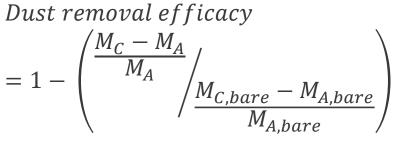


Thermal testing

 Dynamic mechanical analysis (DMA) from -105°C -> 125°C indicates that our coating remains flexible over this temperature range

- Higher glass transition temperature would be better

 No coefficient of thermal expansion (CTE) mismatch below 40°C with aluminum substrate

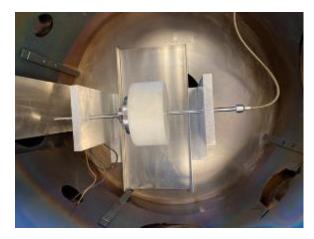


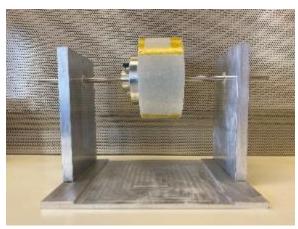
Dust adhesion testing in air

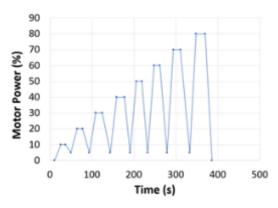
- Used Exolith LMS-1D Lunar Mare Dust simulant, baked out under ۲ vacuum
- Two metrics to evaluate: (1) passive dust mitigation, and (2) ease of dust removal

Dust adhesion reduction efficacy $=1-\left(\frac{\frac{M_B-M_A}{M_A}}{\frac{M_{B,bare}-M_{A,bare}}{M_{A hare}}}\right) = 1-\left(\frac{\frac{M_C-M_A}{M_A}}{\frac{M_{C,bare}-M_{A,bare}}{M_{A hare}}}\right)$

Dust adhesion in air

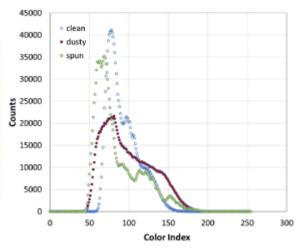

- Versus a bare substrate, our coating was effective at both:
 - Reducing initial dust adhesion by 75-94%
 - Improving dust removal efficacy by >93%
- Uncoated nylon and Teflon had lower initial dust adhesion
 - Experimented with adding static charge to substrates before testing, but were unable to do so in a reproducible fashion


Substrate	Dust adhesion reduction	Dust removal efficacy
Nylon	75%	93%
AA2024	94%	98%
Teflon	78%	95%
Kapton	93%	95%



Dust adhesion testing in vacuum

- CU Boulder collaborators constructed rotating drum apparatus (4" OD, 2" high)
- Sample is wrapped around outside of drum
- Dust sieved onto sample
- Placed into vacuum chamber at <1e-5 torr
- Video is recorded as drum is spun at 0-1280 rpm



Dust adhesion in vacuum

- Image analysis complicated by:
 - Dark NPs in coating
 - Reflections from uncoated aluminum
 - Poor contrast of JSC-1A

Bare aluminum

Protected by SBIR data rights under Contract # N68335-20-C-0089

300

Conclusions & Future Work

- Our coating reduces lunar dust adhesion by over 90% vs. an uncoated substrate
- Robust to environmental exposures
- Does not significantly alter absorptivity or emissivity of most substrates
- Primary application target: aluminum radiators
- Future work:
 - Improvements in characterization methods for dust mitigation in vacuum
 - Demonstration of coating function at cryogenic temperatures
 - NASA Phase II?

Questions?

